xarray.CFTimeIndex.isnull#
- CFTimeIndex.isnull()[source]#
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as
None,numpy.NaNorpd.NaT, get mapped toTruevalues. Everything else get mapped toFalsevalues. Characters such as empty strings ‘’ ornumpy.infare not considered NA values.- Returns:
numpy.ndarray[bool]– A boolean array of whether my values are NA.
See also
Index.notnaBoolean inverse of isna.
Index.dropnaOmit entries with missing values.
isnaTop-level isna.
Series.isnaDetect missing values in Series object.
Examples
Show which entries in a pandas.Index are NA. The result is an array.
>>> idx = pd.Index([5.2, 6.0, np.nan]) >>> idx Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True])
Empty strings are not considered NA values. None is considered an NA value.
>>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True])
For datetimes, NaT (Not a Time) is considered as an NA value.
>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True])