xarray.IndexVariable.median#
- IndexVariable.median(dim=None, *, skipna=None, **kwargs)[source]#
Reduce this NamedArray’s data by applying
medianalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applymedian. For e.g.dim="x"ordim=["x", "y"]. If “…” or None, will reduce over all dimensions.skipna (
boolorNone, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) orskipna=Truehas not been implemented (object, datetime64 or timedelta64).**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatingmedianon this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
NamedArray) – New NamedArray withmedianapplied to its data and the indicated dimension(s) removed
See also
numpy.median,dask.array.median,Dataset.median,DataArray.median- Aggregation
User guide on reduction or aggregation operations.
Notes
Non-numeric variables will be removed prior to reducing.
Examples
>>> from xarray.namedarray.core import NamedArray >>> na = NamedArray("x", np.array([1, 2, 3, 0, 2, np.nan])) >>> na <xarray.NamedArray (x: 6)> Size: 48B array([ 1., 2., 3., 0., 2., nan])
>>> na.median() <xarray.NamedArray ()> Size: 8B array(2.)
Use
skipnato control whether NaNs are ignored.>>> na.median(skipna=False) <xarray.NamedArray ()> Size: 8B array(nan)