xarray.DataTree.any#
- DataTree.any(dim=None, *, keep_attrs=None, **kwargs)[source]#
Reduce this DataTree’s data by applying
anyalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applyany. For e.g.dim="x"ordim=["x", "y"]. If “…” or None, will reduce over all dimensions.keep_attrs (
boolorNone, optional) – If True,attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatinganyon this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
DataTree) – New DataTree withanyapplied to its data and the indicated dimension(s) removed
See also
numpy.any,dask.array.any,Dataset.any,DataArray.any- Aggregation
User guide on reduction or aggregation operations.
Examples
>>> dt = xr.DataTree( ... xr.Dataset( ... data_vars=dict( ... foo=( ... "time", ... np.array([True, True, True, True, True, False], dtype=bool), ... ) ... ), ... coords=dict( ... time=( ... "time", ... pd.date_range("2001-01-01", freq="ME", periods=6), ... ), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ), ... ) >>> dt <xarray.DataTree> Group: / Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: foo (time) bool 6B True True True True True False
>>> dt.any() <xarray.DataTree> Group: / Dimensions: () Data variables: foo bool 1B True