GroupBy objects#

Dataset#

DatasetGroupBy(obj, groupers[, ...])

DatasetGroupBy.map(func[, args, shortcut])

Apply a function to each Dataset in the group and concatenate them together into a new Dataset.

DatasetGroupBy.reduce(func[, dim, axis, ...])

Reduce the items in this group by applying func along some dimension(s).

DatasetGroupBy.assign(**kwargs)

Assign data variables by group.

DatasetGroupBy.assign_coords([coords])

Assign coordinates by group.

DatasetGroupBy.first([skipna, keep_attrs])

Return the first element of each group along the group dimension

DatasetGroupBy.last([skipna, keep_attrs])

Return the last element of each group along the group dimension

DatasetGroupBy.fillna(value)

Fill missing values in this object by group.

DatasetGroupBy.quantile(q[, dim, method, ...])

Compute the qth quantile over each array in the groups and concatenate them together into a new array.

DatasetGroupBy.where(cond[, other])

Return elements from self or other depending on cond.

DatasetGroupBy.all([dim, keep_attrs])

Reduce this Dataset's data by applying all along some dimension(s).

DatasetGroupBy.any([dim, keep_attrs])

Reduce this Dataset's data by applying any along some dimension(s).

DatasetGroupBy.count([dim, keep_attrs])

Reduce this Dataset's data by applying count along some dimension(s).

DatasetGroupBy.cumsum([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying cumsum along some dimension(s).

DatasetGroupBy.cumprod([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying cumprod along some dimension(s).

DatasetGroupBy.max([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying max along some dimension(s).

DatasetGroupBy.mean([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying mean along some dimension(s).

DatasetGroupBy.median([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying median along some dimension(s).

DatasetGroupBy.min([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying min along some dimension(s).

DatasetGroupBy.prod([dim, skipna, ...])

Reduce this Dataset's data by applying prod along some dimension(s).

DatasetGroupBy.std([dim, skipna, ddof, ...])

Reduce this Dataset's data by applying std along some dimension(s).

DatasetGroupBy.sum([dim, skipna, min_count, ...])

Reduce this Dataset's data by applying sum along some dimension(s).

DatasetGroupBy.var([dim, skipna, ddof, ...])

Reduce this Dataset's data by applying var along some dimension(s).

DatasetGroupBy.dims

DatasetGroupBy.groups

Mapping from group labels to indices.

DatasetGroupBy.shuffle_to_chunks([chunks])

Sort or "shuffle" the underlying object.

DataArray#

DataArrayGroupBy(obj, groupers[, ...])

DataArrayGroupBy.map(func[, args, shortcut])

Apply a function to each array in the group and concatenate them together into a new array.

DataArrayGroupBy.reduce(func[, dim, axis, ...])

Reduce the items in this group by applying func along some dimension(s).

DataArrayGroupBy.assign_coords([coords])

Assign coordinates by group.

DataArrayGroupBy.first([skipna, keep_attrs])

Return the first element of each group along the group dimension

DataArrayGroupBy.last([skipna, keep_attrs])

Return the last element of each group along the group dimension

DataArrayGroupBy.fillna(value)

Fill missing values in this object by group.

DataArrayGroupBy.quantile(q[, dim, method, ...])

Compute the qth quantile over each array in the groups and concatenate them together into a new array.

DataArrayGroupBy.where(cond[, other])

Return elements from self or other depending on cond.

DataArrayGroupBy.all([dim, keep_attrs])

Reduce this DataArray's data by applying all along some dimension(s).

DataArrayGroupBy.any([dim, keep_attrs])

Reduce this DataArray's data by applying any along some dimension(s).

DataArrayGroupBy.count([dim, keep_attrs])

Reduce this DataArray's data by applying count along some dimension(s).

DataArrayGroupBy.cumsum([dim, skipna, ...])

Reduce this DataArray's data by applying cumsum along some dimension(s).

DataArrayGroupBy.cumprod([dim, skipna, ...])

Reduce this DataArray's data by applying cumprod along some dimension(s).

DataArrayGroupBy.max([dim, skipna, keep_attrs])

Reduce this DataArray's data by applying max along some dimension(s).

DataArrayGroupBy.mean([dim, skipna, keep_attrs])

Reduce this DataArray's data by applying mean along some dimension(s).

DataArrayGroupBy.median([dim, skipna, ...])

Reduce this DataArray's data by applying median along some dimension(s).

DataArrayGroupBy.min([dim, skipna, keep_attrs])

Reduce this DataArray's data by applying min along some dimension(s).

DataArrayGroupBy.prod([dim, skipna, ...])

Reduce this DataArray's data by applying prod along some dimension(s).

DataArrayGroupBy.std([dim, skipna, ddof, ...])

Reduce this DataArray's data by applying std along some dimension(s).

DataArrayGroupBy.sum([dim, skipna, ...])

Reduce this DataArray's data by applying sum along some dimension(s).

DataArrayGroupBy.var([dim, skipna, ddof, ...])

Reduce this DataArray's data by applying var along some dimension(s).

DataArrayGroupBy.dims

DataArrayGroupBy.groups

Mapping from group labels to indices.

DataArrayGroupBy.shuffle_to_chunks([chunks])

Sort or "shuffle" the underlying object.

Grouper Objects#

groupers.BinGrouper(bins[, right, labels, ...])

Grouper object for binning numeric data.

groupers.UniqueGrouper([labels])

Grouper object for grouping by a categorical variable.

groupers.TimeResampler(freq[, closed, ...])

Grouper object specialized to resampling the time coordinate.

groupers.SeasonGrouper(seasons)

Allows grouping using a custom definition of seasons.

groupers.SeasonResampler(seasons, *[, ...])

Allows grouping using a custom definition of seasons.