Resample objects#

Dataset#

DatasetResample(*args[, dim, resample_dim])

DatasetGroupBy object specialized to resampling a specified dimension

DatasetResample.asfreq()

Return values of original object at the new up-sampling frequency; essentially a re-index with new times set to NaN.

DatasetResample.backfill([tolerance])

Backward fill new values at up-sampled frequency.

DatasetResample.interpolate([kind])

Interpolate up-sampled data using the original data as knots.

DatasetResample.nearest([tolerance])

Take new values from nearest original coordinate to up-sampled frequency coordinates.

DatasetResample.pad([tolerance])

Forward fill new values at up-sampled frequency.

DatasetResample.all([dim, keep_attrs])

Reduce this Dataset's data by applying all along some dimension(s).

DatasetResample.any([dim, keep_attrs])

Reduce this Dataset's data by applying any along some dimension(s).

DatasetResample.apply(func[, args, shortcut])

Backward compatible implementation of map

DatasetResample.assign(**kwargs)

Assign data variables by group.

DatasetResample.assign_coords([coords])

Assign coordinates by group.

DatasetResample.bfill([tolerance])

Backward fill new values at up-sampled frequency.

DatasetResample.count([dim, keep_attrs])

Reduce this Dataset's data by applying count along some dimension(s).

DatasetResample.ffill([tolerance])

Forward fill new values at up-sampled frequency.

DatasetResample.fillna(value)

Fill missing values in this object by group.

DatasetResample.first([skipna, keep_attrs])

Return the first element of each group along the group dimension

DatasetResample.last([skipna, keep_attrs])

Return the last element of each group along the group dimension

DatasetResample.map(func[, args, shortcut])

Apply a function over each Dataset in the groups generated for resampling and concatenate them together into a new Dataset.

DatasetResample.max([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying max along some dimension(s).

DatasetResample.mean([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying mean along some dimension(s).

DatasetResample.median([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying median along some dimension(s).

DatasetResample.min([dim, skipna, keep_attrs])

Reduce this Dataset's data by applying min along some dimension(s).

DatasetResample.prod([dim, skipna, ...])

Reduce this Dataset's data by applying prod along some dimension(s).

DatasetResample.quantile(q[, dim, method, ...])

Compute the qth quantile over each array in the groups and concatenate them together into a new array.

DatasetResample.reduce(func[, dim, axis, ...])

Reduce the items in this group by applying func along the pre-defined resampling dimension.

DatasetResample.std([dim, skipna, ddof, ...])

Reduce this Dataset's data by applying std along some dimension(s).

DatasetResample.sum([dim, skipna, ...])

Reduce this Dataset's data by applying sum along some dimension(s).

DatasetResample.var([dim, skipna, ddof, ...])

Reduce this Dataset's data by applying var along some dimension(s).

DatasetResample.where(cond[, other])

Return elements from self or other depending on cond.

DatasetResample.dims

DatasetResample.groups

Mapping from group labels to indices.

DataArray#

DataArrayResample(*args[, dim, resample_dim])

DataArrayGroupBy object specialized to time resampling operations over a specified dimension

DataArrayResample.asfreq()

Return values of original object at the new up-sampling frequency; essentially a re-index with new times set to NaN.

DataArrayResample.backfill([tolerance])

Backward fill new values at up-sampled frequency.

DataArrayResample.interpolate([kind])

Interpolate up-sampled data using the original data as knots.

DataArrayResample.nearest([tolerance])

Take new values from nearest original coordinate to up-sampled frequency coordinates.

DataArrayResample.pad([tolerance])

Forward fill new values at up-sampled frequency.

DataArrayResample.all([dim, keep_attrs])

Reduce this DataArray's data by applying all along some dimension(s).

DataArrayResample.any([dim, keep_attrs])

Reduce this DataArray's data by applying any along some dimension(s).

DataArrayResample.apply(func[, args, shortcut])

Backward compatible implementation of map

DataArrayResample.assign_coords([coords])

Assign coordinates by group.

DataArrayResample.bfill([tolerance])

Backward fill new values at up-sampled frequency.

DataArrayResample.count([dim, keep_attrs])

Reduce this DataArray's data by applying count along some dimension(s).

DataArrayResample.ffill([tolerance])

Forward fill new values at up-sampled frequency.

DataArrayResample.fillna(value)

Fill missing values in this object by group.

DataArrayResample.first([skipna, keep_attrs])

Return the first element of each group along the group dimension

DataArrayResample.last([skipna, keep_attrs])

Return the last element of each group along the group dimension

DataArrayResample.map(func[, args, shortcut])

Apply a function to each array in the group and concatenate them together into a new array.

DataArrayResample.max([dim, skipna, keep_attrs])

Reduce this DataArray's data by applying max along some dimension(s).

DataArrayResample.mean([dim, skipna, keep_attrs])

Reduce this DataArray's data by applying mean along some dimension(s).

DataArrayResample.median([dim, skipna, ...])

Reduce this DataArray's data by applying median along some dimension(s).

DataArrayResample.min([dim, skipna, keep_attrs])

Reduce this DataArray's data by applying min along some dimension(s).

DataArrayResample.prod([dim, skipna, ...])

Reduce this DataArray's data by applying prod along some dimension(s).

DataArrayResample.quantile(q[, dim, method, ...])

Compute the qth quantile over each array in the groups and concatenate them together into a new array.

DataArrayResample.reduce(func[, dim, axis, ...])

Reduce the items in this group by applying func along the pre-defined resampling dimension.

DataArrayResample.std([dim, skipna, ddof, ...])

Reduce this DataArray's data by applying std along some dimension(s).

DataArrayResample.sum([dim, skipna, ...])

Reduce this DataArray's data by applying sum along some dimension(s).

DataArrayResample.var([dim, skipna, ddof, ...])

Reduce this DataArray's data by applying var along some dimension(s).

DataArrayResample.where(cond[, other])

Return elements from self or other depending on cond.

DataArrayResample.dims

DataArrayResample.groups

Mapping from group labels to indices.