xarray.Dataset.max#
- Dataset.max(dim=None, *, skipna=None, keep_attrs=None, **kwargs)[source]#
Reduce this Dataset’s data by applying
maxalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applymax. For e.g.dim="x"ordim=["x", "y"]. If “…” or None, will reduce over all dimensions.skipna (
boolorNone, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) orskipna=Truehas not been implemented (object, datetime64 or timedelta64).keep_attrs (
boolorNone, optional) – If True,attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatingmaxon this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
Dataset) – New Dataset withmaxapplied to its data and the indicated dimension(s) removed
See also
numpy.max,dask.array.max,DataArray.max- Aggregation
User guide on reduction or aggregation operations.
Examples
>>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 120B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan
>>> ds.max() <xarray.Dataset> Size: 8B Dimensions: () Data variables: da float64 8B 3.0
Use
skipnato control whether NaNs are ignored.>>> ds.max(skipna=False) <xarray.Dataset> Size: 8B Dimensions: () Data variables: da float64 8B nan