xarray.computation.weighted.DatasetWeighted#
- class xarray.computation.weighted.DatasetWeighted(obj, weights)[source]#
- __init__(obj, weights)[source]#
Create a Weighted object
- Parameters:
Notes
weightsmust be aDataArrayand cannot contain missing values. Missing values can be replaced byweights.fillna(0).
Methods
__init__(obj, weights)Create a Weighted object
mean([dim, skipna, keep_attrs])Reduce this Dataset's data by a weighted
meanalong some dimension(s).quantile(q, *[, dim, keep_attrs, skipna])Apply a weighted
quantileto this Dataset's data along some dimension(s).std([dim, skipna, keep_attrs])Reduce this Dataset's data by a weighted
stdalong some dimension(s).sum([dim, skipna, keep_attrs])Reduce this Dataset's data by a weighted
sumalong some dimension(s).sum_of_squares([dim, skipna, keep_attrs])Reduce this Dataset's data by a weighted
sum_of_squaresalong some dimension(s).sum_of_weights([dim, keep_attrs])Calculate the sum of weights, accounting for missing values in the data.
var([dim, skipna, keep_attrs])Reduce this Dataset's data by a weighted
varalong some dimension(s).Attributes