xarray.core.groupby.DatasetGroupBy.cumprod#
- DatasetGroupBy.cumprod(dim=None, *, skipna=None, keep_attrs=None, **kwargs)[source]#
Reduce this Dataset’s data by applying
cumprodalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applycumprod. For e.g.dim="x"ordim=["x", "y"]. If None, will reduce over the GroupBy dimensions. If “…”, will reduce over all dimensions.skipna (
boolorNone, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) orskipna=Truehas not been implemented (object, datetime64 or timedelta64).keep_attrs (
boolorNone, optional) – If True,attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatingcumprodon this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
Dataset) – New Dataset withcumprodapplied to its data and the indicated dimension(s) removed
See also
numpy.cumprod,dask.array.cumprod,Dataset.cumprod,Dataset.cumulative- GroupBy: Group and Bin Data
User guide on groupby operations.
Notes
Use the
floxpackage to significantly speed up groupby computations, especially with dask arrays. Xarray will use flox by default if installed. Pass flox-specific keyword arguments in**kwargs. See the flox documentation for more.Non-numeric variables will be removed prior to reducing.
Note that the methods on the
cumulativemethod are more performant (with numbagg installed) and better supported.cumsumandcumprodmay be deprecated in the future.Examples
>>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 120B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan
>>> ds.groupby("labels").cumprod() <xarray.Dataset> Size: 48B Dimensions: (time: 6) Dimensions without coordinates: time Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 4.0 1.0
Use
skipnato control whether NaNs are ignored.>>> ds.groupby("labels").cumprod(skipna=False) <xarray.Dataset> Size: 48B Dimensions: (time: 6) Dimensions without coordinates: time Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 4.0 nan