xarray.core.groupby.DatasetGroupBy.prod#
- DatasetGroupBy.prod(dim=None, *, skipna=None, min_count=None, keep_attrs=None, **kwargs)[source]#
Reduce this Dataset’s data by applying
prodalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applyprod. For e.g.dim="x"ordim=["x", "y"]. If None, will reduce over the GroupBy dimensions. If “…”, will reduce over all dimensions.skipna (
boolorNone, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) orskipna=Truehas not been implemented (object, datetime64 or timedelta64).min_count (
intorNone, optional) – The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. Only used if skipna is set to True or defaults to True for the array’s dtype. Changed in version 0.17.0: if specified on an integer array and skipna=True, the result will be a float array.keep_attrs (
boolorNone, optional) – If True,attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatingprodon this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
Dataset) – New Dataset withprodapplied to its data and the indicated dimension(s) removed
See also
numpy.prod,dask.array.prod,Dataset.prod- GroupBy: Group and Bin Data
User guide on groupby operations.
Notes
Use the
floxpackage to significantly speed up groupby computations, especially with dask arrays. Xarray will use flox by default if installed. Pass flox-specific keyword arguments in**kwargs. See the flox documentation for more.Non-numeric variables will be removed prior to reducing.
Examples
>>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 120B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan
>>> ds.groupby("labels").prod() <xarray.Dataset> Size: 48B Dimensions: (labels: 3) Coordinates: * labels (labels) object 24B 'a' 'b' 'c' Data variables: da (labels) float64 24B 1.0 4.0 0.0
Use
skipnato control whether NaNs are ignored.>>> ds.groupby("labels").prod(skipna=False) <xarray.Dataset> Size: 48B Dimensions: (labels: 3) Coordinates: * labels (labels) object 24B 'a' 'b' 'c' Data variables: da (labels) float64 24B nan 4.0 0.0
Specify
min_countfor finer control over when NaNs are ignored.>>> ds.groupby("labels").prod(skipna=True, min_count=2) <xarray.Dataset> Size: 48B Dimensions: (labels: 3) Coordinates: * labels (labels) object 24B 'a' 'b' 'c' Data variables: da (labels) float64 24B nan 4.0 0.0