xarray.core.resample.DatasetResample.all#
- DatasetResample.all(dim=None, *, keep_attrs=None, **kwargs)[source]#
Reduce this Dataset’s data by applying
allalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applyall. For e.g.dim="x"ordim=["x", "y"]. If None, will reduce over the Resample dimensions. If “…”, will reduce over all dimensions.keep_attrs (
boolorNone, optional) – If True,attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatingallon this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
Dataset) – New Dataset withallapplied to its data and the indicated dimension(s) removed
See also
numpy.all,dask.array.all,Dataset.all- Resampling and grouped operations
User guide on resampling operations.
Notes
Use the
floxpackage to significantly speed up resampling computations, especially with dask arrays. Xarray will use flox by default if installed. Pass flox-specific keyword arguments in**kwargs. See the flox documentation for more.Examples
>>> da = xr.DataArray( ... np.array([True, True, True, True, True, False], dtype=bool), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 78B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) bool 6B True True True True True False
>>> ds.resample(time="3ME").all() <xarray.Dataset> Size: 27B Dimensions: (time: 3) Coordinates: * time (time) datetime64[ns] 24B 2001-01-31 2001-04-30 2001-07-31 Data variables: da (time) bool 3B True True False