xarray.core.resample.DatasetResample.var#
- DatasetResample.var(dim=None, *, skipna=None, ddof=0, keep_attrs=None, **kwargs)[source]#
Reduce this Dataset’s data by applying
varalong some dimension(s).- Parameters:
dim (
str,IterableofHashable,"..."orNone, default:None) – Name of dimension[s] along which to applyvar. For e.g.dim="x"ordim=["x", "y"]. If None, will reduce over the Resample dimensions. If “…”, will reduce over all dimensions.skipna (
boolorNone, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) orskipna=Truehas not been implemented (object, datetime64 or timedelta64).ddof (
int, default:0) – “Delta Degrees of Freedom”: the divisor used in the calculation isN - ddof, whereNrepresents the number of elements.keep_attrs (
boolorNone, optional) – If True,attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any) – Additional keyword arguments passed on to the appropriate array function for calculatingvaron this object’s data. These could include dask-specific kwargs likesplit_every.
- Returns:
reduced (
Dataset) – New Dataset withvarapplied to its data and the indicated dimension(s) removed
See also
numpy.var,dask.array.var,Dataset.var- Resampling and grouped operations
User guide on resampling operations.
Notes
Use the
floxpackage to significantly speed up resampling computations, especially with dask arrays. Xarray will use flox by default if installed. Pass flox-specific keyword arguments in**kwargs. See the flox documentation for more.Non-numeric variables will be removed prior to reducing.
Examples
>>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 120B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan
>>> ds.resample(time="3ME").var() <xarray.Dataset> Size: 48B Dimensions: (time: 3) Coordinates: * time (time) datetime64[ns] 24B 2001-01-31 2001-04-30 2001-07-31 Data variables: da (time) float64 24B 0.0 1.556 0.0
Use
skipnato control whether NaNs are ignored.>>> ds.resample(time="3ME").var(skipna=False) <xarray.Dataset> Size: 48B Dimensions: (time: 3) Coordinates: * time (time) datetime64[ns] 24B 2001-01-31 2001-04-30 2001-07-31 Data variables: da (time) float64 24B 0.0 1.556 nan
Specify
ddof=1for an unbiased estimate.>>> ds.resample(time="3ME").var(skipna=True, ddof=1) <xarray.Dataset> Size: 48B Dimensions: (time: 3) Coordinates: * time (time) datetime64[ns] 24B 2001-01-31 2001-04-30 2001-07-31 Data variables: da (time) float64 24B nan 2.333 nan