xarray.computation.rolling.DatasetRolling.construct#
- DatasetRolling.construct(window_dim=None, *, stride=1, fill_value=<NA>, keep_attrs=None, sliding_window_view_kwargs=None, **window_dim_kwargs)[source]#
Convert this rolling object to xr.Dataset, where the window dimension is stacked as a new dimension
- Parameters:
window_dim (
stror mapping, optional) – A mapping from dimension name to the new window dimension names. Just a string can be used for 1d-rolling.stride (
int, optional) – size of stride for the rolling window.fill_value (
Any, default:dtypes.NA) – Filling value to match the dimension size.sliding_window_view_kwargs – Keyword arguments that should be passed to the underlying array type’s
sliding_window_viewfunction.**window_dim_kwargs (
{dim: new_name, ...}, optional) – The keyword arguments form ofwindow_dim.
- Returns:
Dataset– Dataset with views of the original arrays. By default, the returned arrays are not writeable. For numpy arrays, one can passwriteable=Trueinsliding_window_view_kwargs.
See also
numpy.lib.stride_tricks.sliding_window_view,dask.array.lib.stride_tricks.sliding_window_viewNotes
With dask arrays, it’s possible to pass the
automatic_rechunkkwarg assliding_window_view_kwargs={"automatic_rechunk": True}. This controls whether dask should automatically rechunk the output to avoid exploding chunk sizes. Automatically rechunking is the default behaviour. Importantly, each chunk will be a view of the data so large chunk sizes are only safe if no copies are made later.