xarray.computation.rolling.DatasetRolling.reduce#
- DatasetRolling.reduce(func, keep_attrs=None, sliding_window_view_kwargs=None, **kwargs)[source]#
Reduce the items in this group by applying func along some dimension(s).
- Parameters:
func (
callable()) – Function which can be called in the form func(x, **kwargs) to return the result of collapsing an np.ndarray over an the rolling dimension.keep_attrs (
bool, default:None) – If True, the attributes (attrs) will be copied from the original object to the new one. If False, the new object will be returned without attributes. If None uses the global default.sliding_window_view_kwargs (
Mapping) – Keyword arguments that should be passed to the underlying array type’ssliding_window_viewfunction.**kwargs (
dict) – Additional keyword arguments passed on to func.
- Returns:
reduced (
DataArray) – Array with summarized data.
See also
numpy.lib.stride_tricks.sliding_window_view,dask.array.lib.stride_tricks.sliding_window_viewNotes
With dask arrays, it’s possible to pass the
automatic_rechunkkwarg assliding_window_view_kwargs={"automatic_rechunk": True}. This controls whether dask should automatically rechunk the output to avoid exploding chunk sizes. Automatically rechunking is the default behaviour. Importantly, each chunk will be a view of the data so large chunk sizes are only safe if no copies are made later.